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Abstract. Automata allow many constraints on sequences of variables
to be specified in a high-level way. An automaton with accumulators
induces a decomposition of the specified constraint into a conjunction of
constraints with existing propagators. Towards improving propagation,
we design a fully automated tool that proposes constraints implied by
such a decomposition. We show that a suitable selection of the implied
constraints can considerably improve solving time and propagation.

1 Introduction

Frameworks are given in [4, 11] for specifying a constraint on a sequence of
variables in a high-level way by means of a finite automaton, possibly augmented
with accumulators in the framework of [4]. An automaton can be seen as a
checker for ground instances of the specified constraint.

The framework of [11] lifts an automaton into a domain-consistent propa-
gator for the specified constraint. In this paper, we focus on the more general
framework of [4], which lifts an automaton into a decomposition in terms of
constraints with existing propagators. However, it is unknown how to maintain
domain consistency efficiently for the decomposition. Getting closer to domain
consistency is the challenge we tackle in this paper.

We continue our earlier work [10], where we added constraints implied by
the decomposition in order to improve propagation: we manually translated an
automaton with accumulators into an imperative checker, with a loop iterating
over the input symbols, fed the checker into an off-the-shelf automated loop-
invariant generator, and manually translated each loop invariant into an implied
constraint. We did so for two particular constraints, but we proved for one of
them that domain consistency can be maintained at no asymptotic space and
time overhead for the decomposition extended with implied constraints.

After a summary of the background material in Section 2, the contributions
and impact of Sections 3 and 4 of this paper are as follows:

– We design a fully automated tool (at http://www.it.uu.se/research/
group/astra/software/impGen.zip) that reads any automaton, in the SICS-
tus Prolog syntax, of a large subclass of those in the Global Constraint Cat-
alogue [2] and proposes a set of implied constraints.
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– Our tool works directly on the automaton and generates implied constraints.
– Our tool eliminates uninteresting and mutually redundant constraints from

the generated set of implied constraints.
– We show that a suitable set of implied constraints can improve propagation.
– Since our implied constraints are linear, we strongly believe they are also

relevant in the context of integer-programming decompositions, such as in [9].

In Section 5, we conclude and discuss other related work as well as future work.

2 Background: Constraints on Automata

We define background concepts, add running examples, and state our objective.

2.1 Automata, the Regular and Automaton Constraints

A deterministic finite automaton (DFA) is a tuple 〈Q,Σ, δ, q0, A〉, where Q is the
set of states, Σ the alphabet, δ : Q×Σ → Q the transition function, q0 ∈ Q the
start state, and A ⊆ Q the set of accepting states. When δ(q, σ) = q′, there is a
transition from state q to q′ upon consuming alphabet symbol σ. Let Σ∗ denote
the infinite set of words built from Σ, including the empty word, denoted ε. The
extended transition function δ̂ : Q×Σ∗ → Q for words is recursively defined by
δ̂(q, ε) = q and δ̂(q, wσ) = δ(δ̂(q, w), σ) for a word w and symbol σ. A word w
is accepted if δ̂(q0, w) ∈ A.

We here define a memory-DFA (mDFA) with a memory of k ≥ 0 integer
accumulators as a tuple 〈Q,Σ, δ, q0, I, A, α〉, where Q, Σ, q0, and A are as in a
DFA, while the transition function δ has signature (Q×Zk)×Σ → Q×Zk, and
similarly for its extended version δ̂. Further, I is the k-tuple of initial values of
the accumulators in the memory. Finally, α : A×Zk → Z is a total function called
the acceptance function and transforms the memory of an accepting state into
an integer. Given a word w, the mDFA returns α(δ̂(〈q0, I〉, w)) if w is accepted.

Example 1. In a sequence, a group [2] is a maximal contiguous subsequence with
values from a given set. The nGroup(X,W,N) constraint [2] holds if there are
N groups of values from the given setW in the sequence X of variables. Consider
the mDFA in Figure 1a. It returns the number of groups of value ‘∈’ within a
given word over the alphabet Σ = {∈, 6∈}. It uses k = 1 accumulator. The set
Q is {s, t}. The start state q0 is s, indicated by an arrow coming from nowhere,
and annotated by the initialisation to zero of c, hence I = 〈0〉. A transition
δ(〈q, 〈c〉〉, σ) = 〈q′, 〈c′〉〉, where c′ is a functional expression in terms of c, is
depicted by an arrow going from state q to q′, annotated by a symbol σ ∈ Σ
and the memory update 〈c〉 := 〈c′〉. If an update corresponds to the identity
function, then we do not depict it. All states marked by a double circle are
accepting, hence A = Q. The acceptance function α transforms a memory 〈c〉 at
both states into c, and is depicted by a box linked to both states. ut

The Automaton(M, X,R) constraint [4] holds if the word represented by
the sequence X of variables is accepted by mDFA M and variable R is the
integer returned byM, that is R = α(δ̂(〈q0, I〉, X)).
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Fig. 1: (a) Memory-DFA N with one accumulator for nGroup(X,W,N).
(b) Memory-DFA F with two accumulators for FullGroupNval(X,W, T ).

2.2 Signature Variables and Signature Constraints

A constraint C on a sequenceX of n variables can often be encoded with the help
of a DFA or mDFA that operates not on X, but on a sequence S of m variables
that are called signature variables, each depending via a signature constraint [4]
under a total function on a sliding window of a consecutive variables within X.
The constant a ≥ 1 is called the arity of the signature constraints, and is linked
to the lengths n of X and m of S by m = n+ 1− a.
Example 2. Consider again nGroup(X,W,N). We constrain a sequence S of
m = n signature variables with domain {∈, 6∈} by the signature constraints (Xi ∈
W ⇔ Si =

8∈′) for all 1 ≤ i ≤ n: we have a = 1 since each signature constraint
is on a single Xi. Using the mDFA N of Figure 1a we encode nGroup(X,W,N)
by Automaton(N , S,N) and these signature constraints. ut

2.3 Decomposition of the Automaton Constraint

Consider a constraint C(X,R) encoded by an Automaton(M, S,R) constraint
and signature constraints channelling between the variables Xi and the signa-
ture variables Si. In the absence of signature constraints and signature variables,
we consider S1 = X1 ∧ · · · ∧ Sm = Xn, with m = n, to be the signature con-
straints. Let the mDFA M = 〈Q,Σ, δ, q0, I, A, α〉 have k accumulators. The
Automaton(M, S,R) constraint has the following decomposition [4]:

(Q0 = q0 ∧ 〈C0
1 , . . . , C

0
k〉 = I) ∧ (Qm ∈ A ∧ α(〈Cm

1 , . . . , C
m
k 〉) = R)∧m

i=1 Trans(Qi−1, 〈Ci−1
1 , . . . , Ci−1

k 〉, Si, Q
i, 〈Ci

1, . . . , C
i
k〉)

(1)

where:

– Each Qi is a new variable, with domain Q, and is called a state variable: it
denotes the state ofM after the values of the signature variables S1, . . . , Si

have been consumed, with 0 ≤ i ≤ m.
– Each Ci

j is a new integer variable, and is called an accumulator variable:
it denotes the value of the jth accumulator of M after the values of the
signature variables S1, . . . , Si have been consumed, with 0 ≤ i ≤ m.
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– The ground instance Trans(q, 〈c1, . . . , ck〉, σ, q′, 〈c′1, . . . , c′k〉) holds if δ makes
a transition from state q to state q′, labelled by symbol σ ∈ Σ and updating
the tuple of k accumulators from the values 〈c1, . . . , ck〉 to the expressions
〈c′1, . . . , c′k〉; it is called a transition constraint.

It is unknown how to maintain domain consistency efficiently both for Trans
and for this decomposition: see [1] for a detailed analysis.

2.4 Precise Formulation of Our Objective

We aim at automatically generating implied constraints that can improve prop-
agation for the decomposition of an Automaton(M, S,R) constraint whereM
has at least one accumulator. The generation is specific toM but not to S and
can be done off-line. We focus on mDFAs where every accumulator update is
a linear expression on all the accumulators.. Further, we focus on generating
implied constraints that are linear inequalities on the accumulator and state
variables.

3 Generation of Linear Implied Constraints

Our approach to generating constraints implied by the decomposition of an
Automaton(M, S,R) constraint consists of three steps. First, using one half
of Farkas’ lemma and a linear template T for implied constraints, we set up a
system L of non-linear constraints that model T being true at every state of the
mDFAM (Section 3.1). Second, we solve L, each solution providing an instan-
tiation of T into a particular linear implied constraint (Section 3.2). Third, we
eliminate uninteresting and mutually redundant constraints from the generated
set of implied constraints (Section 3.3).

3.1 Implied Constraints: Template and Set-Up of the System L

We adapt the recipe of [12] for linear transition systems. Everything that follows
requires linearity, also of the implied constraints, so we now make that restriction.

One half of Farkas’ lemma (e.g., [7]) says that a system of e linear inequal-
ities ai1y1 + · · · + aikyk + bi ≥ 0 over k real-valued variables yj has another
linear inequality α1y1 + · · ·+ αkyk + β ≥ 0 over the same variables as a logical
consequence if there exist e real numbers λi ≥ 0 such that αj =

∑e
i=1 λiaij , for

1 ≤ j ≤ k, and β ≥ ∑e
i=1 λibi. If the i

th linear constraint is an equality, then
the requirement λi ≥ 0 is dropped.

Let variable yj denote the jth accumulator ofM, with 1 ≤ j ≤ k. Our linear
template T for implied constraints for now is α1y1 + · · ·+ αkyk + β ≥ 0, where
the Greek letters denote the variables for which we will solve constraints.

An instance of template T is true at every state of a mDFAM if it is true at
the start state and if its truth is preserved by every transition ofM. For the start
state, we encode using Farkas’ lemma that the point-wise initialisation equalities
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behind 〈y1, . . . , yk〉 = I have T as a logical consequence. For each transition
δ(〈q, 〈y1, . . . , yk〉〉, σ) = 〈q′, 〈y′1, . . . , y′k〉〉, where each y′j is a linear functional
expression, we encode using Farkas’ lemma that template T has T [y/y′] as a
template logical consequence, where T [y/y′] denotes T with every yj substituted
by y′j . The resulting constraints are in general non-linear.

We now go beyond adapting the recipe of [12], by discussing three refinements
of the ideas seen so far. First, many implied constraints that provide extra prop-
agation are expressed on the current and previous values of the accumulators.

Example 3. Recall the mDFA in Figure 1a for the nGroup constraint of Exam-
ple 1: it has one accumulator, called c, and c ≤ c2 +1 does provide extra propa-
gation [10], where the new accumulator c2 denotes the value of c two transitions
ago. We say that the history length is 2. Let another new accumulator c1 denote
the value of c one transition ago. Upon adding the initialisation 〈c2, c1〉 := 〈0, 0〉
to the start state, and adding the accumulator update 〈c2, c1〉 := 〈c1, c〉 to each
transition, we get the template α1c2 + α2c1 + α3c + β ≥ 0, so that the desired
implied constraint c ≤ c2+1 corresponds to α1 = −1∧α2 = 0∧α3 = 1 = β. ut

Our tool allows the user to indicate the history length.
Second, the template T can be extended by adding a term ρq for the state q

at which the automaton is. This requires numbering the states. Third, we can
also make as many copies of the template as there are states in M, so as to
aim at generating state-specific implied constraints. Our tool allows the user to
switch on these options.

3.2 Implied Constraints: Generation by Solving the System L

We now show how to solve L so that each solution provides an instantiation of
the variables αj , ρ, and β of the template, yielding an implied constraint on the
accumulator variables yj and state variable q.

Memory-DFAs are defined for integer accumulators, so it suffices to solve
the resulting non-linear constraint system for integer values of the variables.
Further, we reckon that for each variable a small finite integer interval centred
on zero, such as {−5, . . . , 5}, suffices for finding many useful implied constraints.
Hence we solve the constraints using a finite-domain CP solver. Since our tool
is written in SICStus Prolog and reads automata in the SICStus Prolog syntax,
we use SICStus Prolog [8].

Many implied constraints that provide extra propagation are not generated
in one go, even if all options are switched on.

Example 4. Consider the implied constraint c ≤ c2 + 1 of Example 3. Let us
number state s of the mDFA in Figure 1a as 0 and state t as 1. Generating
this implied constraint requires the prior knowledge that c − c1 ≤ q. It turns
out that c − c1 ≤ q is an implied constraint, requiring c and c1 to be equal at
the start state s and apart by at most one unit at state t. So let us add this
implied constraint to the top side of each application of Farkas’ lemma, with its
own multiplier λp, and set up a second non-linear system L2. It turns out that
c ≤ c2 + 1 is now an implied constraint, generated from a solution to L2. ut
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Our tool allows the user to indicate an upper bound on the number of non-
linear systems it will set up and solve; it will finish earlier if no new implied
constraints are generated at some iteration. Recall that the whole generation
process is specific to an automaton but not to the constrained sequence, so that
it is off-line and can take an arbitrary amount of time.

3.3 Implied Constraints: Redundancy Elimination and Proposal

Some generated implied constraints are useless. For example, the implied con-
straint 5 ≥ 0 is vacuously true. Other generated implied constraints are mu-
tually redundant. For example, the implied constraint c ≤ c2 + 1 is redundant
with 3c ≤ 3c2 + 3. Our tool automatically eliminates useless and redundant
constraints.

Since the decomposition (1) of Automaton(M, [S1, . . . , Sm], R) reveals ac-
cumulator variables Ci

j and state variables Qi for every prefix [S1, . . . , Si], with
0 ≤ i ≤ m, we advocate posting an implied constraint for every 0 ≤ i ≤ m
rather than just for i = m. An implied constraint γ specific to state q is posted
as (Qi = q)⇒ γ.

4 Results

To assess the generated implied constraints, we experimented on the decomposi-
tions in isolation (Section 4.1) and in the context of entire constrained optimisa-
tion problems (Section 4.2). These experiments were run using the following im-
plied constraints: c ≥ c2 and c2+1 ≥ c for nGroup, c ≥ c1 and c4+`4+4 ≥ c+`
for FullGroupNval [2] (using the mDFA of Figure 1b), as well as c1 + 1 ≥ c
and c2 + 2 ≥ c for Inflexion [6].

All experiments were run in SICStus Prolog 4.2 [8] on a quad core 3.07 GHz
Intel Core i7-950 machine with 8 MB cache, running openSUSE 13.1.

4.1 Experiments on Decompositions in Isolation

We generated instances with sequences S of m signature variables as well as
random initial domains for the result variable R (one value, two values, and
intervals of length 2 or 3) and the Si (one or two values for nGroup and
FullGroupNval, where the signature constraints have arity a = 2; one to
three values for Inflexion, where a = 3). The instances for nGroup have se-
quences of length m = 100, those for FullGroupNval have m = 50, and those
for Inflexion have m = 15. We generated a set of 1,500 satisfiable instances
and a set of 1,500 unsatisfiable instances. The default search strategy is used:
leftmost variable first (R before S), lower value first.

The results on the sets of satisfiable instances are shown in Figure 2. The de-
composition of nGroup with the implied constraints is almost always faster than
the decomposition alone, is about 30% faster, and has about 60% fewer failures
on average. The decomposition of FullGroupNval with the implied constraints
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Fig. 2: Seconds (top row) and failures (bottom row) to find all solutions to
satisfiable instances of nGroup (left column), FullGroupNval (centre), and
Inflexion (right). The x-axis is for the presence of implied constraints.

is sometimes faster than the decomposition alone, but is about 20% slower, and
has about 50% fewer failures on average. The decomposition of Inflexion with
the implied constraints is always faster than the decomposition alone, is about
40% faster, and has almost 100% fewer failures on average.

The results on the sets of unsatisfiable instances are similar to those on the
sets of satisfiable instances, and have been omitted for space reasons.

4.2 Experiments on Entire Constraint Problems

In order to test the implied constraints also in the context of entire constraint
problems, we generated hard random constrained optimisation problem instances,
inspired by the schemes in [13]. The instances have the following features:

– A set S of s = 15 variables, with domain {0, 1, 2}.
– A sequence R of r = 5 variables with domain {0, 1, . . . , s}.
– A system of b0.5 · r · ln rc = 4 constraints, divided as follows:
• 2 constraints of the kind that is being tested (i.e., 2 FullGroupNval

constraints, 2 nGroup constraints, or 2 Inflexion constraints),
• 2 randomly selected constraints among AllDifferent, linear equalities,

linear inequalities, nGroup, FullGroupNval, and Inflexion.
– Each nGroup, FullGroupNval, and Inflexion constraint is on a ran-

domly selected subset of S and a randomly selected Ri as the result variable.
An AllDifferent constraint is on a randomly selected subsequence of R.
A linear equality constraint

∑r
i=1 di ·Ri = 0 is on R, with randomly selected

coefficients di ∈ {−1, 0, 1}. A linear inequality constraint is of the form
Ri > Rj or Ri > 2 · Rj + R`, for randomly selected elements of R, possibly
with repetition. The implied constraints are added only to the decomposition
of every occurrence of the constraint that is being tested.
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Fig. 3: Seconds (top row) and failures (bottom row) to maximise a sum in 1,000
problem instances involving nGroup, FullGroupNval, or Inflexion.

– The cost to be maximised is the sum of the variables Ri.
– The search strategy is leftmost variable first (R before S), domain splitting,

lower half first.

The results are shown in Figure 3. When the implied constraints are added to
the decompositions, both the time and the failures are always reduced.

5 Conclusion, Related Work, and Future Work

We have described a fully automated parametric tool that proposes, in an off-
line process, a set of non-redundant linear constraints that are implied by the
decomposition in [4] of a constraint being specified by an automaton with linearly
updated accumulators. We have shown that a suitable selection of the proposed
implied constraints can considerably improve solving time and propagation.

The closest related work is [3], where we generate constraints implied by
the decomposition of an Automaton(M, X,R) constraint when the variable R
takes the same value whether the automaton M consumes the sequence X or
its reverse. Like here, the implied constraints are on the accumulator variables
and state variables, but they need not be linear. Unlike here, the generation is
limited to the indicated particular case and is manual in most sub-cases.

Graph invariants are used in [5] to generate implied constraints automatically.
In contrast, our approach does not require a database of precomputed invariants.

In the future, we want to use a richer template for implied constraints.
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